Ehrenfest-paradoxon

A Wikipédiából, a szabad enciklopédiából

Az Ehrenfest-paradoxon egy merev korong forgásának leírásával foglalkozik a relativitáselmélet szemszögéből.

1909-ben Paul Ehrenfest eredetileg egy ideális merev hengerről értekezett, mely a tengelye körül forog tengelyszimmetrikusan. A lemez sugara, R, mindig merőleges a mozgásra, és így egyenlő az R0 értékkel stacionárius állapotban. A kerülete azonban (2πR) Lorentz-rövidülést (hosszkontrakciót) „szenved” a paradoxon szerint, és kisebb érték lesz, mint nyugalmi állapotban, általában γ tényezővel (Lorentz-tényező). Ennek eredményeként R<R0.

A paradoxon tovább mélyül azáltal, hogy a kerületre illeszkedő mérőrúd a hengerrel együtt forog, így az is rövidül.

Az Ehrenfest-paradoxon az egyik legrégebben felvetett paradoxon a relativitáselméletben, és hosszú, ellentmondó története van, mely a különböző értelmezésekből adódik.


A paradoxon lényege[szerkesztés]

Tekintsünk egy R sugarú lemezt, mely állandó ω szögsebességgel forog.

Ehrenfest-paradoxon lemeze

A vonatkoztatási rendszerünk legyen fixen a lemez középpontja. Ekkor a relatív sebesség a kerület bármely pontján .

Így a kerület hosszkontrakciót fog szenvedni Lorentz után,

érték szerint.

De mivel a sugár merőleges a mozgás irányára, a sugárra nem lép fel relativisztikus rövidülés.

Ezért:

.

Ez egy paradoxon, mivel az euklideszi geometria szerint ez pontosan = .

A paradoxon feloldása[szerkesztés]

A paradoxon feloldását már 1937-ben megértették, azonban azóta is több szerző különböző egymásnak ellentétes koncepciót állít fel a paradoxon megoldására.[1]

Øyvind Grøn szerint a paradoxon abból származik, hogy lehetetlen órákat szinkronizálni egy forgó vonatkoztatási rendszerben.[2]

Egy másik megoldás a Langevin–Landau–Lifschitz-féle mértékrendszer alkalmazása a kisméretű forgó testekre.[3]

Kapcsolódó szócikkek[szerkesztés]

Hivatkozások[szerkesztés]

Források[szerkesztés]

További információk[szerkesztés]